|
In mathematics, the Bott residue formula, introduced by , describes a sum over the fixed points of a holomorphic vector field of a compact complex manifold. ==Statement== If ''v'' is a holomorphic vector field on a compact complex manifold ''M'', then : where *The sum is over the fixed points ''p'' of the vector field ''v'' *The linear transformation ''A''''p'' is the action induced by ''v'' on the holomorphic tangent space at ''p'' *''P'' is an invariant polynomial function of matrices of degree dim(''M'') *Θ is a curvature matrix of the holomorphic tangent bundle 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Bott residue formula」の詳細全文を読む スポンサード リンク
|